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Figure 10: Classi!cation performance accuracy with and
without Transfer Learning across di"erent RF environments:
(a) no TL in a familiar environment, (b) TL tested in a familiar
environment, and (c) TL tested in an unseen environment.
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Figure 11: Inference time from !rst iteration: (a) temporal
variation with a 5-instance moving average with No (before
24 s) and High Tra#c (after 24 s), (b) inference time CDF.

Table 3: Average inference times across di"erent models.
Model Con!guration {[64,128],any} {[128,256],any}

Inference Time (𝐿𝑀) 401.8 621.6

6.3 Timing and Power Benchmarking
We assess InterfO-RAN’s robustness by analyzing its inference time,
GPU utilization, and power consumption, both with and without it.

Analysis of Inference Time. Fig. 11a shows the temporal
variation of the inference time using a 5-instance moving aver-
age between No (before 24 s) and High Tra!c (after 24 s), while
Fig. 11b presents the corresponding Cumulative Distribution Func-
tion (CDF). We observe "uctuations during high-tra!c scenarios,
when InterfO-RAN performs more frequent inferences, likely due
to the increased number of operations and contention for GPU re-
sources. However, the system maintains overall stability, e#ectively
managing workload distribution. Additionally, Tab. 3 shows the
average inference time for di#erent model con$gurations, varying
with $lter counts. We notice a 220 𝐿s improvement in the smaller
con$guration due to the reduced computational complexity.

Analysis of GPU Utilization and Power. Fig. 12a and Fig. 12b
compare A100 GPU utilization and power draw with and without
InterfO-RAN in the same end-to-end scenario. During the warm-up
phase (see Sec. 4.1), GPU usage spikes to 21.2% (vs. 3.3% without
InterfO-RAN), and the power rises to 82.73W (vs. 61.79W). In other
phases, power remains similar, except in High Tra!c conditions,
where it increases from 63.83 W to 66.13 W and a higher standard
deviation (1.77 vs. 0.67) when using InterfO-RAN. We conclude that
InterfO-RAN e#ectively balances the workload without straining
RAN operations, while leveraging TensorRT optimizations.
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Figure 12: GPU utilization (blue) and power draw (orange)
comparison with and without InterfO-RAN dApp.

7 Related Work
Limited research has been conducted on UL interference in 5G NR
within real-time timescales and tested on real-world testbed envi-
ronments. Existing literature predominantly relies on simulations
to predict the presence of interference. For instance, [21] and [32]
detect intermodulation interference in 5G NR using linear regres-
sion and CNNs, respectively. Similarly, [26] and [20] detect Long
Term Evolution (LTE) UL interference using a novel approach that
preprocesses time-domain signals into spectral waterfall represen-
tations and addresses the problem using an image classi$cation
CNN. Additionally, authors in [27] identify interference among
IEEE 802.11b/g, IEEE 802.15.4, and IEEE 802.15.1 using a deep CNN.

In the context of spectrum monitoring, [15] develops a CNN for
wireless signal identi$cation, while [18] applies logistic regression
to detect co-channel interference between LTE and WiFi users,
though both approaches still lack validation beyond simulations.
The authors of [30] propose a framework based on CNNs to sense
and classify wideband spectrum portions, supported by real-world
data collection and testing. Several studies are conducted to charac-
terize interference signals in various scenarios, such as [2], which
addresses downlink interference inmassiveMultiple Input, Multiple
Output (MIMO) 5G macro-cells using geometric channel models,
and [29], which focuses on modeling interference at higher fre-
quencies for Sixth generation (6G) networks. Furthermore, [11]
and [4] discuss interference mitigation mechanisms. The former
focuses on angular-based exclusion zones and spatial power control
in mmWave frequency ranges, while the latter employs supervised
learning-based Interference Whitening (IW) selection methods.

Studies on timescales faster than those provided by non-Real-
Time (over 1 sec) and near-Real-Time (between 10 and 1000 ms)
RICs are continuously increasing, highlighting the need for faster
and more adaptable control mechanisms capable of responding
to dynamic network conditions. InterfO-RAN is based on the O-
RAN concept of dApp operating on a timescale faster than 10 ms,
$rst described in detail in [8]. This concept was recently expanded
in [17], which presents a comprehensive framework built on the
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variation with a 5-instance moving average with No (before
24 s) and High Tra#c (after 24 s), (b) inference time CDF.

Table 3: Average inference times across di"erent models.
Model Con!guration {[64,128],any} {[128,256],any}

Inference Time (𝐿𝑀) 401.8 621.6

6.3 Timing and Power Benchmarking
We assess InterfO-RAN’s robustness by analyzing its inference time,
GPU utilization, and power consumption, both with and without it.

Analysis of Inference Time. Fig. 11a shows the temporal
variation of the inference time using a 5-instance moving aver-
age between No (before 24 s) and High Tra!c (after 24 s), while
Fig. 11b presents the corresponding Cumulative Distribution Func-
tion (CDF). We observe "uctuations during high-tra!c scenarios,
when InterfO-RAN performs more frequent inferences, likely due
to the increased number of operations and contention for GPU re-
sources. However, the system maintains overall stability, e#ectively
managing workload distribution. Additionally, Tab. 3 shows the
average inference time for di#erent model con$gurations, varying
with $lter counts. We notice a 220 𝐿s improvement in the smaller
con$guration due to the reduced computational complexity.

Analysis of GPU Utilization and Power. Fig. 12a and Fig. 12b
compare A100 GPU utilization and power draw with and without
InterfO-RAN in the same end-to-end scenario. During the warm-up
phase (see Sec. 4.1), GPU usage spikes to 21.2% (vs. 3.3% without
InterfO-RAN), and the power rises to 82.73W (vs. 61.79W). In other
phases, power remains similar, except in High Tra!c conditions,
where it increases from 63.83 W to 66.13 W and a higher standard
deviation (1.77 vs. 0.67) when using InterfO-RAN. We conclude that
InterfO-RAN e#ectively balances the workload without straining
RAN operations, while leveraging TensorRT optimizations.
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Figure 12: GPU utilization (blue) and power draw (orange)
comparison with and without InterfO-RAN dApp.

7 Related Work
Limited research has been conducted on UL interference in 5G NR
within real-time timescales and tested on real-world testbed envi-
ronments. Existing literature predominantly relies on simulations
to predict the presence of interference. For instance, [21] and [32]
detect intermodulation interference in 5G NR using linear regres-
sion and CNNs, respectively. Similarly, [26] and [20] detect Long
Term Evolution (LTE) UL interference using a novel approach that
preprocesses time-domain signals into spectral waterfall represen-
tations and addresses the problem using an image classi$cation
CNN. Additionally, authors in [27] identify interference among
IEEE 802.11b/g, IEEE 802.15.4, and IEEE 802.15.1 using a deep CNN.

In the context of spectrum monitoring, [15] develops a CNN for
wireless signal identi$cation, while [18] applies logistic regression
to detect co-channel interference between LTE and WiFi users,
though both approaches still lack validation beyond simulations.
The authors of [30] propose a framework based on CNNs to sense
and classify wideband spectrum portions, supported by real-world
data collection and testing. Several studies are conducted to charac-
terize interference signals in various scenarios, such as [2], which
addresses downlink interference inmassiveMultiple Input, Multiple
Output (MIMO) 5G macro-cells using geometric channel models,
and [29], which focuses on modeling interference at higher fre-
quencies for Sixth generation (6G) networks. Furthermore, [11]
and [4] discuss interference mitigation mechanisms. The former
focuses on angular-based exclusion zones and spatial power control
in mmWave frequency ranges, while the latter employs supervised
learning-based Interference Whitening (IW) selection methods.

Studies on timescales faster than those provided by non-Real-
Time (over 1 sec) and near-Real-Time (between 10 and 1000 ms)
RICs are continuously increasing, highlighting the need for faster
and more adaptable control mechanisms capable of responding
to dynamic network conditions. InterfO-RAN is based on the O-
RAN concept of dApp operating on a timescale faster than 10 ms,
$rst described in detail in [8]. This concept was recently expanded
in [17], which presents a comprehensive framework built on the
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Figure 10: Classi!cation performance accuracy with and
without Transfer Learning across di"erent RF environments:
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Figure 11: Inference time from !rst iteration: (a) temporal
variation with a 5-instance moving average with No (before
24 s) and High Tra#c (after 24 s), (b) inference time CDF.

Table 3: Average inference times across di"erent models.
Model Con!guration {[64,128],any} {[128,256],any}

Inference Time (𝐿𝑀) 401.8 621.6

6.3 Timing and Power Benchmarking
We assess InterfO-RAN’s robustness by analyzing its inference time,
GPU utilization, and power consumption, both with and without it.

Analysis of Inference Time. Fig. 11a shows the temporal
variation of the inference time using a 5-instance moving aver-
age between No (before 24 s) and High Tra!c (after 24 s), while
Fig. 11b presents the corresponding Cumulative Distribution Func-
tion (CDF). We observe "uctuations during high-tra!c scenarios,
when InterfO-RAN performs more frequent inferences, likely due
to the increased number of operations and contention for GPU re-
sources. However, the system maintains overall stability, e#ectively
managing workload distribution. Additionally, Tab. 3 shows the
average inference time for di#erent model con$gurations, varying
with $lter counts. We notice a 220 𝐿s improvement in the smaller
con$guration due to the reduced computational complexity.

Analysis of GPU Utilization and Power. Fig. 12a and Fig. 12b
compare A100 GPU utilization and power draw with and without
InterfO-RAN in the same end-to-end scenario. During the warm-up
phase (see Sec. 4.1), GPU usage spikes to 21.2% (vs. 3.3% without
InterfO-RAN), and the power rises to 82.73W (vs. 61.79W). In other
phases, power remains similar, except in High Tra!c conditions,
where it increases from 63.83 W to 66.13 W and a higher standard
deviation (1.77 vs. 0.67) when using InterfO-RAN. We conclude that
InterfO-RAN e#ectively balances the workload without straining
RAN operations, while leveraging TensorRT optimizations.
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Figure 12: GPU utilization (blue) and power draw (orange)
comparison with and without InterfO-RAN dApp.

7 Related Work
Limited research has been conducted on UL interference in 5G NR
within real-time timescales and tested on real-world testbed envi-
ronments. Existing literature predominantly relies on simulations
to predict the presence of interference. For instance, [19] and [20]
detect intermodulation interference in 5G NR using linear regres-
sion and CNNs, respectively. Similarly, [17] and [18] detect Long
Term Evolution (LTE) UL interference using a novel approach that
preprocesses time-domain signals into spectral waterfall represen-
tations and addresses the problem using an image classi$cation
CNN. Additionally, authors in [21] identify interference among
IEEE 802.11b/g, IEEE 802.15.4, and IEEE 802.15.1 using a deep CNN.

In the context of spectrum monitoring, [22] develops a CNN for
wireless signal identi$cation, while [23] applies logistic regression
to detect co-channel interference between LTE and WiFi users,
though both approaches still lack validation beyond simulations.
The authors of [24] propose a framework based on CNNs to sense
and classify wideband spectrum portions, supported by real-world
data collection and testing. Several studies are conducted to charac-
terize interference signals in various scenarios, such as [25], which
addresses downlink interference inmassiveMultiple Input, Multiple
Output (MIMO) 5G macro-cells using geometric channel models,
and [26], which focuses on modeling interference at higher fre-
quencies for Sixth generation (6G) networks. Furthermore, [27]
and [28] discuss interference mitigation mechanisms. The former
focuses on angular-based exclusion zones and spatial power control
in mmWave frequency ranges, while the latter employs supervised
learning-based Interference Whitening (IW) selection methods.

Studies on timescales faster than those provided by non-Real-
Time (over 1 sec) and near-Real-Time (between 10 and 1000 ms)
RICs are continuously increasing, highlighting the need for faster
and more adaptable control mechanisms capable of responding to
dynamic network conditions. InterfO-RAN is based on the O-RAN
concept of dApp operating on a timescale faster than 10 ms, $rst
described in detail in [29]. This concept was recently expanded
in [10], which presents a comprehensive framework built on the
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without Transfer Learning across di"erent RF environments:
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Figure 11: Inference time from !rst iteration: (a) temporal
variation with a 5-instance moving average with No (before
24 s) and High Tra#c (after 24 s), (b) inference time CDF.

Table 3: Average inference times across di"erent models.
Model Con!guration {[64,128],any} {[128,256],any}

Inference Time (𝐿𝑀) 401.8 621.6

6.3 Timing and Power Benchmarking
We assess InterfO-RAN’s robustness by analyzing its inference time,
GPU utilization, and power consumption, both with and without it.

Analysis of Inference Time. Fig. 11a shows the temporal
variation of the inference time using a 5-instance moving aver-
age between No (before 24 s) and High Tra!c (after 24 s), while
Fig. 11b presents the corresponding Cumulative Distribution Func-
tion (CDF). We observe "uctuations during high-tra!c scenarios,
when InterfO-RAN performs more frequent inferences, likely due
to the increased number of operations and contention for GPU re-
sources. However, the system maintains overall stability, e#ectively
managing workload distribution. Additionally, Tab. 3 shows the
average inference time for di#erent model con$gurations, varying
with $lter counts. We notice a 220 𝐿s improvement in the smaller
con$guration due to the reduced computational complexity.

Analysis of GPU Utilization and Power. Fig. 12a and Fig. 12b
compare A100 GPU utilization and power draw with and without
InterfO-RAN in the same end-to-end scenario. During the warm-up
phase (see Sec. 4.1), GPU usage spikes to 21.2% (vs. 3.3% without
InterfO-RAN), and the power rises to 82.73W (vs. 61.79W). In other
phases, power remains similar, except in High Tra!c conditions,
where it increases from 63.83 W to 66.13 W and a higher standard
deviation (1.77 vs. 0.67) when using InterfO-RAN. We conclude that
InterfO-RAN e#ectively balances the workload without straining
RAN operations, while leveraging TensorRT optimizations.
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Figure 12: GPU utilization (blue) and power draw (orange)
comparison with and without InterfO-RAN dApp.

7 Related Work
Limited research has been conducted on UL interference in 5G NR
within real-time timescales and tested on real-world testbed envi-
ronments. Existing literature predominantly relies on simulations
to predict the presence of interference. For instance, [19] and [20]
detect intermodulation interference in 5G NR using linear regres-
sion and CNNs, respectively. Similarly, [17] and [18] detect Long
Term Evolution (LTE) UL interference using a novel approach that
preprocesses time-domain signals into spectral waterfall represen-
tations and addresses the problem using an image classi$cation
CNN. Additionally, authors in [21] identify interference among
IEEE 802.11b/g, IEEE 802.15.4, and IEEE 802.15.1 using a deep CNN.

In the context of spectrum monitoring, [22] develops a CNN for
wireless signal identi$cation, while [23] applies logistic regression
to detect co-channel interference between LTE and WiFi users,
though both approaches still lack validation beyond simulations.
The authors of [24] propose a framework based on CNNs to sense
and classify wideband spectrum portions, supported by real-world
data collection and testing. Several studies are conducted to charac-
terize interference signals in various scenarios, such as [25], which
addresses downlink interference inmassiveMultiple Input, Multiple
Output (MIMO) 5G macro-cells using geometric channel models,
and [26], which focuses on modeling interference at higher fre-
quencies for Sixth generation (6G) networks. Furthermore, [27]
and [28] discuss interference mitigation mechanisms. The former
focuses on angular-based exclusion zones and spatial power control
in mmWave frequency ranges, while the latter employs supervised
learning-based Interference Whitening (IW) selection methods.

Studies on timescales faster than those provided by non-Real-
Time (over 1 sec) and near-Real-Time (between 10 and 1000 ms)
RICs are continuously increasing, highlighting the need for faster
and more adaptable control mechanisms capable of responding to
dynamic network conditions. InterfO-RAN is based on the O-RAN
concept of dApp operating on a timescale faster than 10 ms, $rst
described in detail in [29]. This concept was recently expanded
in [10], which presents a comprehensive framework built on the
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Fig. 5: GPU utilization over time for a cluster with 2 GPUs (maxi-
mum GPU utilization at 200%), with AI-for-RAN (GPU-based DU)
and AI-on-RAN (LLM chatbot) dynamic workloads.

(IMS) and Deployment Management Service (DMS).
These extend O-RAN services that terminate the O2
interface for infrastructure configuration and workload
lifecycle management, respectively. In the AI-O-Cloud,
they also translate policies and schedules determined by
the SMO into AI infrastructure configurations and AI
workload deployment, while enabling coexistence with
the RAN.

In Fig. 6, we propose a procedure for the real-time
deployment of AI workloads that combines (i) pre-
authentication with the AI-SMO, with an indication of
computing requirements at specific AI-RAN sites; (ii)
the definition of a resource sharing policy in the AI-
RAN Orchestrator, which is then communicated to the
edge site through AI-O2; (iii) the use of a Multi-access
Edge Computing (MEC) interface, adopting the ETSI
standards for edge computing, by the pre-authenticated
users to submit real-time AI workloads to a specific
AI-RAN site; and (iv) involvement of the DMS, which
allocates resources and deploys the AI services with
minimal latency, as long as the amount of resources
required is compatible with the policy defined by the

Real-time AI task can be executed
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Fig. 6: Procedure for the authentication and deployment of real-time
AI tasks on the AI-RAN infrastructure.

AI-RAN Orchestrator. If not, the AI task is not admitted,
and the process resumes at the AI-SMO, where the user
can explore options to increase priority of the task (e.g.,
through different monetization tiers) or submit it as a
batch workload or to a different AI-RAN site.

V. CONCLUSIONS

We presented an end-to-end network architecture for
AI-RAN coexistence. After reviewing the AI-RAN Al-
liance activities and O-RAN architecture, we discussed
the challenges associated to operating AI and RAN on
the same infrastructure. We then proposed an extension
of the O-RAN architecture and O-RAN components
that enables the deployment and management of AI
workloads on the shared RAN infrastructure, including
different modes for managing AI workloads with differ-
ent requirements for deployment latency and location.
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interface for infrastructure configuration and workload
lifecycle management, respectively. In the AI-O-Cloud,
they also translate policies and schedules determined by
the SMO into AI infrastructure configurations and AI
workload deployment, while enabling coexistence with
the RAN.

In Fig. 6, we propose a procedure for the real-time
deployment of AI workloads that combines (i) pre-
authentication with the AI-SMO, with an indication of
computing requirements at specific AI-RAN sites; (ii)
the definition of a resource sharing policy in the AI-
RAN Orchestrator, which is then communicated to the
edge site through AI-O2; (iii) the use of a Multi-access
Edge Computing (MEC) interface, adopting the ETSI
standards for edge computing, by the pre-authenticated
users to submit real-time AI workloads to a specific
AI-RAN site; and (iv) involvement of the DMS, which
allocates resources and deploys the AI services with
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required is compatible with the policy defined by the
AI-RAN Orchestrator. If not, the AI task is not admitted,
and the process resumes at the AI-SMO, where the user
can explore options to increase priority of the task (e.g.,
through different monetization tiers) or submit it as a
batch workload or to a different AI-RAN site.

V. CONCLUSIONS

We presented an end-to-end network architecture for
AI-RAN coexistence. After reviewing the AI-RAN Al-
liance activities and O-RAN architecture, we discussed
the challenges associated to operating AI and RAN on
the same infrastructure. We then proposed an extension
of the O-RAN architecture and O-RAN components
that enables the deployment and management of AI
workloads on the shared RAN infrastructure, including
different modes for managing AI workloads with differ-
ent requirements for deployment latency and location.
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Programmable and white-box radios and software can enable multiplexing of different spectrum services on the 
same (i) protocol stack, (ii) waveform, (iii) radio using the same portion of spectrum
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Fig. 2: Current spectrum allocations by the Federal Communications Commission (FCC), the National Telecommunications and Information Administration
(NTIA), and the International Telecommunication Union (ITU) Region 2.

Space Research: The SR is “a radiocommunication service
in which spacecraft or other objects in space are used for
scientific or technological research purposes” [6]. In FR-3, it
consists mainly of transmission links between Earth stations,
satellites, and spacecrafts. The ITU Regulations for Region 2
allocate 14 bands for a total of 5.635 GHz for primary use.

Earth Exploration Satellites, Inter Satellite, and MetSat:
Earth exploration (or remote sensing) satellites are used to
gather data about the Earth and its natural phenomena. EESS
sensors are divided into active, which obtain information by
transmitting radio waves and then receiving their reflected en-
ergy, and passive sensors, which measure the electromagnetic
energy emitted, absorbed, or scattered by the Earth’s surface
or atmosphere. The ITU Regulations for Region 2 allocate 15
bands for a total of 5.065 GHz for primary use, including the
MetSat, a sub-service of the EESS dedicated to meteorological
purposes [6].

Radio Astronomy: The Radio Astronomy Service mainly
relies on ground radio telescopes, that observe specific fre-
quencies to record events and survey the universe. To do that,
they employ large antennas and some of the most sensitive
instruments on the planet. For this reason, the ITU also defined
some “zero emission” zones around RA sites under rule 5.340
of the ITU Radio Regulations [6].

C. Interference analysis, current coexistence and protection
criteria

Frequency sharing and coexistence between multiple, di-
verse services is already in place, as shown in Fig. 2. Specif-
ically, MS already coexists with several services. We report
here a brief overview of the existing sharing criteria and reg-
ulations according to the ITU Recommendations, highlighting
some prominent examples. Table 5 of [14] lists the ITU IMT
frequency spectrum sharing studies for different services, but
only for sub-6 GHz frequencies, highlighting the need for
further studies and analyses.

Another notable example of sharing is with the communi-
cation services among the EESS, e.g., in the 8.025→8.4 GHz
band, where also FS, FSS, MetSat and MS are allocated.
Similarly, EESS bands used for sensing applications have
been successfully shared with ground, non-scientific services,
although extra requirements are necessary to protect the in-
cumbent (e.g., [15] for 10.6→ 10.68 GHz (passive)).

Differently, for the more sensitive SR and RA services, LoS
transmitters are identified as the main potential interference
sources. The main protection against interference for both
services is the remote location of the ground stations, and
the definition of coordination areas where IMT-2020 can still
be deployed after agreement is obtained with the SR or
RA operator. As such, ground services are not considered a
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Fig. 4: Interference to a FS antenna (red cross) from the gNBs (dots) in the
neighboring area. The heatmaps report the Interference to Noise Ratio (INR)
produced by each gNB in the worst (top) and average (bottom) case, over
500 Monte Carlo iterations. The color and size of the markers on the map
represent the average RFI generated by the gNB. The green dots represent
the gNB whose INR does not exceed the →10 dB threshold even in the worst
case, at any frequency.

reports the INR over the considered bands in the worst (top)
and best (bottom) case, for each gNB in the area. Furthermore,
the dot size and color are representative of the average INR
generated by each gNB over the considered spectrum.

As expected, employing lower frequencies and, correspond-
ingly, arrays with fewer antennas, generate higher interference,
as the propagation characteristics are more favorable and the
communication less directional. On the contrary, signals at
higher frequencies get more attenuated and have a reduced
impact on the incumbent, making the case for coexistence.
However, due to directional amplification, the worst-case in-
terference is similar throughout the frequency band, as some
Multi Path Components (MPCs) to the incumbent might be
amplified by the main beam of the gNB.

Then, we observe that, out of the 50 gNBs in the area,
only 7 generate significant interference at the incumbent, as
highlighted in the map by the dot color and size. Notably,
the INR is not only determined by the distance between
the incumbent and the interferer, as there exist gNBs closer
to the incumbent than, e.g., gNB 34 and 35, that generate

Fig. 5: Extension of the Open RAN architecture for FR-3 spectrum and
services sharing.

negligible interference. Rather, the INR is determined by the
LoS/Non-Line-of-Sight (NLoS) conditions and by the reflec-
tion, diffraction, and scattering of the secondary MPCs, that in
turn heavily depend on the topology of the environment and
on the 3D geometry of the buildings. This further stresses the
need not only for highly accurate channel models but also for
detailed and precise digital representations of the propagation
environments. In this context, digital twins can be a useful tool
to plan, design, and manage the coexistence of diverse systems
in overlapping bands. For instance, in the case reported in
Fig. 4, adopting interference suppression techniques at the 7
largest interferers can eliminate almost completely the RFI at
the incumbent.

V. A NETWORK ARCHITECTURE FOR AGILE SPECTRUM
AND SERVICES SHARING IN FR-3

The analysis above has highlighted the potential of wireless
networks in FR-3, together with challenges associated with
managing a diverse spectrum landscape and safely integrating
and coexisting with current incumbents. This translates into
a network architecture which needs to be agile, dynamic, and
programmable to efficiently adapt to bespoke conditions in the
spectrum utilization and services requested by the users. In this
sense, the Open RAN paradigm, which introduces virtualiza-
tion, programmability, and plug-and-play disaggregation of the
RAN [9], can enable dynamic solutions supporting spectrum
and services sharing in FR-3, as we show in Fig. 5 and discuss
next.
Dynamic Sharing and Coordination with Incumbents. The
Open RAN architecture comes with programmable, intelligent
controllers that serve a dual purpose in this context (left
part of Fig. 5). First, they represent an interface between the
RAN and the external world, allowing bi-directional exchange
of telemetry and information on the network status but also
control and configurations. Second, they allow for a dynamic
reconfiguration of the network infrastructure, including a dy-
namic allocation of the spectrum used by the RAN, through
slicing or dynamic cell configurations. These ingredients allow
agile spectrum and infrastructure sharing, with input and/or
feedback from current incumbents.

Example: city-scale RFI between FR-3 cellular and 
satellite downlinks
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